The jets propelled the lumpy stones into an intake at the front of the vehicle, where they rattled into a steel pipe rising all the way back up to the ship. Air compressors pushed the rocks up in a column of seawater and sediment and into a shipboard centrifuge that spun away most of the water. Conveyor belts then carried the rocks to a metal ramp that dropped them with a clatter into the ship's hold. From a windowless control room nearby, a team of engineers in blue and orange coveralls monitored the operation, their faces lit by the polychromatic glow from a hodgepodge of screens.
The ship, called the Hidden Gem, was a former oil-drilling vessel nearly 800 feet long, retrofitted for sea mining by the Metals Company, an international firm officially headquartered in Canada. This was the first test of its system to collect the ancient black stones. They are officially known as polymetallic nodules, but the Metals Company's CEO, Gerard Barron, likes to call them "batteries in a rock." That's because the stones happen to be packed with metals that are essential for manufacturing electric cars-a market that is surging worldwide. Barron's company is at the front of a pack of more than a dozen enterprises slavering over the billions of dollars that could be reaped from those little subsea rocks.
The world's long-overdue, fitful transition to renewable energy is hobbled by an Achilles' heel: It requires staggering quantities of natural resources. Manufacturing enough electric vehicles to replace their fossil-fueled counterparts will require billions of tons of cobalt, lithium, copper, and other metals. To meet the exploding demand, mining companies, carmakers, and governments are scouring the planet for potential mines or expanding existing ones, from the deserts of Chile to the rain forests of Indonesia. Meanwhile, what might be the richest source of all-the ocean floor remains untapped. The US Geological Survey estimates that 21 billion tons of polymetallic nodules lie in a single region of the Pacific, containing more of some metals (such as nickel and cobalt) than can be found in all the world's dry-land deposits.
"Here's one of them," Barron said when we met recently in the lobby of a chic Toronto hotel, as he casually pulled one of these geologic oddities out of his jacket pocket and handed it to me. Barron is a fit, muscular Australian in his mid-fifties, with swept-back dark hair, a nautical beard, and craggy Kurt Russell-esque looks. His jeans, black boots, and wrist loads of leather bracelets lend him a roguish air. He has just flown in from London for a big mining conference. For years, he's been traveling the world to talk up deep-sea mining to investors and government officials. He and other would-be sea miners argue that collecting nodules from the deep will be not only cheaper than traditional mining but also gentler on the planet. No rain forests uprooted, no Indigenous peoples displaced, no toxic tailings poisoning rivers.
Barron may finally be on the brink of achieving his goal of mega-scale mining on the ocean floor. The Metals Company has tens of millions of dollars in the bank and partnerships with major maritime companies. The Hidden Gem's foray last October marked the first time since the 1970s that any company had successfully trialed a complete system for harvesting nodules.
The main thing holding the company back is international law, which currently forbids deep-ocean mining. That may be about to change, however. Last year, the Metals Company teamed up with the tiny South Pacific island nation of Nauru to trigger an obscure process that could let them bypass the international prohibition and get a license to start full-scale operations as early as July 2024.
That prospect has sparked an outraged backlash. Environmental groups, scientists, and even some corporations in the market for battery metals fear the potential havoc of seabed mining. The oceans provide much of the world's biodiversity, a significant chunk of humanity's food, and the planet's biggest carbon sink. No one knows how such an unprecedented incursion would affect the many life forms that live in the abyssal depths, the marine life farther up the water column, or the ocean itself. The European Parliament and countries including Germany, Chile, Spain, and several Pacific island nations have joined dozens of organizations in calling for at least a temporary moratorium on deep-sea mining. Several banks have declared they won't loan to ocean-mining ventures. Corporations including BMW, Microsoft, Google, Volvo, and Volkswagen have pledged not to buy deepsea metals until the environmental impacts are better understood. Even Aquaman is opposed: Jason Momoa narrated a recently released documentary denouncing sea mining.
"This has the potential to transform the oceans, and not for the better," says Diva Amon, a marine scientist who has worked extensively in the main area of the Pacific targeted for mining, including as a contractor for one of the sea-mining companies. "We could stand to lose parts of the planet and species that live there before we know, understand, and value them."
None of that deters Barron. "The biggest challenge to our planet is climate change and biodiversity loss. We don't have a spare decade to sit around," he declares. By the end of the Hidden Gem's trial last October, the vehicle had delivered more than 3,000 tons of the stones, mounded up in a glistening black pyramid nearly four stories high. "This," Barron promised the press, "is just the beginning."
THE NODULES HAVE been growing, in utter blackness and near-total silence, for millions of years. Each one started as a fragment of something else-a tiny fossil, a scrap of basalt, a shark's tooth that drifted down to the plain at the very bottom of the ocean. In the lugubrious unfolding of geologic time, specks of waterborne nickel, copper, cobalt, and manganese slowly accreted onto them. By now, trillions lie half-buried in the sediment carpeting the ocean floor.
[https://cdn.magzter.com/1450523853/1679923958/articles/gi_cpJfjD1680085672567/9161719298.jpg]
One March day in 1873, some of these subaqueous artifacts were dragged for the first time into sunlight. Sailors aboard the HMS Challenger, a former British warship retrofitted into a floating research lab, dredged a net along the sea bottom, hauled it up, and dumped the dripping sediment onto the wooden deck. As the expedition's scientists, in long trousers and shirtsleeves, eagerly sifted through the mud and muck, they noted the many "peculiar black oval bodies" that they soon determined were concretions of valuable minerals. A fascinating discovery, but it would be almost a century before the world began to dream of exploiting these stones.
In 1965, an American geologist published an influential book called The Mineral Resources of the Sea, which generously estimated that the nodules contained enough manganese, cobalt, nickel, and other metals to feed the world's industrial needs for thousands of years. Mining the nodules, he speculated, "could serve to remove one of the historic causes of war between nations, supplies of raw materials for expanding populations. Of course it might produce the opposite effect also, that of fomenting inane squabbles over who owns which areas of the ocean floor."
In an era when population growth and an embryonic environmental movement were fueling concerns about natural resources, seabed mining suddenly got hot. Throughout the 1970s, governments and private companies rushed to develop ships and rigs to pull up nodules. There was so much hype that in 1972, it seemed completely plausible when billionaire Howard Hughes announced that he was dispatching a custom-built ship into the Pacific to search for nodules. (In fact, the CIA had recruited Hughes to provide cover for the ship's Bond-esque mission: to covertly retrieve a sunken Soviet submarine.) But none of the actual sea miners managed to come up with a system that could do the job at a price that made sense, and the fizz went out of the nascent industry.
By the turn of the 21st century, advancing marine technology made sea mining seem plausible again. With GPS and sophisticated motors, ships could float above precisely chosen points on the seafloor. Remotely operated underwater vehicles grew more capable and dove deeper. The nodules now seemed to be within reach, just at the moment when booming economies such as China's were ravenous for metals.
Barron saw the potential bonanza decades ago. He grew up on a dairy farm, the youngest of five kids. (He now has five of his own.) "I knew I didn't want to be a dairy farmer, but I loved dairy farm life," he says. "I loved driving tractors and harvesters." He left home to go to a regional university and started his first company, a loan-refinancing operation, while still a student. After graduating, he moved to Brisbane "to discover the big, wide world." Over the years, he has been involved in magazine publishing, ad software, and conventional car battery operations in China.
In 2001, a tennis buddy of Barron's-a geologist, former prospector, and early web-hosting entrepreneur named David Heydon-pitched him on a company he was spinning up, a sea-mining outfit called Nautilus Minerals. Barron was fascinated to learn that the oceans were filled with metals. He put some of his own money into the venture and rounded up other investors.
Nautilus wasn't going after polymetallic nodules, but rather what seemed like an easier target: underwater formations called seafloor massive sulfides, which are rich in copper and other metals. The company struck a deal with the government of Papua New Guinea to mine sulfides off the country's coast. (Under international law, countries can do basically whatever they want within their Economic Exclusion Zones, which extend up to 200 miles from their coastlines.) It sounded good enough to attract half a billion dollars from investors, including Papua New Guinea itself.
But in 2019, after spending some $460 million, Nautilus went bust. Neither Barron nor Heydon lost any of their own money: Both had sold their shares about a decade earlier, with Barron clearing about $30 million in profit. Papua New Guinea, where more than half the population lives in poverty, was out $120 million. "It wasn't my business," Barron tells me. "I was just supporting David, really."
Heydon, meanwhile, was building a company called DeepGreen-rebranded in 2021 as the Metals Company-this time pursuing polymetallic nodules. By then, the growing demand for electric vehicles had added both a new potential market and an extra environmental justification for the project. Barron came on as CEO, and several other Nautilus alums joined up, including Heydon's son Robert. Along with other would-be miners, they started knocking on the door of the International Seabed Authority.
Based in Kingston, Jamaica, the ISA has the contradictory tasks of protecting the ocean floor while organizing its commercial exploitation. Back in the 1980s, most of the world's nations-notably excluding the United States-signed a kind of constitution for the oceans, the United Nations Convention on the Law of the Sea. Among many other things, the document established the International Seabed Authority to represent what are now its 167 member nations. The organization was charged with devising rules to govern the then-nonexistent deepsea-mining industry. The testudinal pace of subsea geology is rivaled only by that of international bureaucracy, and the ISA has been working to develop those rules ever since. Until regulations are agreed upon, full-scale mining is prohibited. But in the meantime, the agency can grant miners the rights to explore specific areas and reserve them for commercial exploitation. The ISA also declared that private companies must partner with a member country. Even the tiniest member country will do.
By now, the Seabed Authority has granted permits to 22 companies and governments to explore enormous swaths of the Pacific, Atlantic, and Indian Ocean seabeds. Most are targeting nodules lying roughly 3 miles underwater in the Clarion Clipperton Zone, an expanse of the Pacific between Mexico and Hawaii measuring 1.7 million square miles. Holding the rights to three of the choicest parcels is Gerard Barron and the Metals Company. The company's chief financial officer recently told investors that those expanses could yield metals worth $31 billion.
Here's what makes all of this urgent. The mining ban has a loophole: the two-year trigger. A section of the treaty known as Paragraph 15 states that if any member country formally notifies the Seabed Authority that it wants to start sea mining in international waters, the organization will have two years to adopt full regulations. If it fails to do so, the treaty says the ISA "shall nonetheless consider and provisionally approve such plan of work." This text is commonly interpreted to mean mining must be allowed to go ahead, even in the absence of full regulations. "Paragraph 15 was appallingly drafted," says Duncan Currie, a lawyer for the Deep Sea Conservation Coalition, an international umbrella organization of dozens of groups. "Several countries dispute the idea that it means they need to automatically approve a plan of work."
In the summer of 2021, the president of Nauru formally notified the Seabed Authority that the country, along with the Metals Company's wholly owned subsidiary, Nauru Ocean Resources, planned to begin sea mining. The two-year trigger has been pulled. The Metals Company's audacious gambit may have opened the door to deep-sea mining for the first time.
AS AN ENVIRONMENTALIST," Barron says, he finds the opposition to his plans frustrating."Save the oceans' is a really easy slogan to get behind. I'm behind it!" he says. "I want to save the oceans, but I also want to save the planet." It might be true that getting metals from the seafloor is less damaging than getting them from land. But so far, few outside the industry are convinced.
Very little is truly known about the deep ocean. Gathering data hundreds of miles from land and miles below the water's surface is extraordinarily difficult. A single day's work can cost up to $80,000, and sophisticated tools such as remotely operated vehicles have only recently become available to many scientists. In 2022, 31 marine researchers published a paper that reviewed hundreds of studies on deep-sea mining. The authors also interviewed 20 scientists, industry members, and policymakers; almost all said the scientific community needed at least five more years "to make evidence-based recommendations" for regulating the industry.
Every phase of the mining process entails serious risks for the world's oceans, which are already severely stressed by pollution, overfishing, and climate change. Start at the bottom. A massive piece of machinery tank-treading over the pristine ocean floor, prying loose thousands of nodules from the beds where they have lain for millennia, is inevitably going to cause some damage. Corals, sponges, nematodes, and dozens of other organisms live on the nodules themselves or shelter beneath them. Other critters float around them, including anemones with 8-foot tentacles, rippling squid worms, glass sponges, and ghostly white Dumbo octopuses. "It's like Dr. Seuss down there," says Amon, the marine scientist. The nodules, Amon believes, are a critical part of the ecosystem that supports all those creatures. And since they formed over millions of years, any harm that results from removing them "is in effect irreversible." Some scientists are also concerned that the huge amounts of carbon embedded on the ocean floor could be released, potentially interfering with the ocean's ability to sequester carbon.
Silt and clay stirred up by the collector vehicles will also rise up into the water, creating plumes of sediment that could cloud the water for miles, linger for weeks or more, and suffocate creatures farther up the water column. Those plumes might also contain dissolved metals or other toxic substances that could harm aquatic life.
Moving upward, the noise and light emitted by the harvester vehicles and riser systems could affect any number of creatures that have evolved to live in silence and darkness. A recent study found that the racket from just one seabed mining operation could echo for hundreds of miles through the water, potentially interfering with aquatic organisms' ability to navigate and find food and mates.
Once the nodules have been carried up to a ship, the silt-infused water that accompanied them will have to be dumped back into the sea, creating another potentially dangerous sediment plume. "We are talking about massive volumes. Fifty thousand cubic meters a day," says Jeff Drazen, an ocean scientist at the University of Hawaii who has also worked extensively in the Clarion Clipperton Zone, including on a research mission funded by the Metals Company. "That's like a freight train of muddy seawater every day."
[https://cdn.magzter.com/1450523853/1679923958/articles/gi_cpJfjD1680085672567/9117131163.jpg]
A 2022 report from the United Nations Environment Programme sums up the grim picture. Bottom line, according to the authors: "Current scientific consensus suggests that deep-sea mining will be highly damaging to ocean ecosystems." More than 700 marine science and policy experts have signed a petition calling for a "pause" on sea mining until more research has been conducted.
Barron insists that his company is committed to getting the science right and points out that it has funded 18 research expeditions (to fulfill the requirements of the Seabed Authority). "Last year I spent $50 million on ocean science," he tells me. "I don't see anyone else doing that."
By now, he argues, we know enough. "The lack of full scientific knowledge should not be used as an excuse not to proceed when the known impacts of the alternative-land-based mining are there for us all to see," he says. It is a "certainty," he says, that sea mining will be less destructive. Whoever authored the Metals Company's own registration filing with the US Securities and E...